Aula Prática Machine Learning I
À vista R$ 0,00 no boleto, PIX ou cartão.
Pague pelo PIX ou cartão e faça o download agora mesmo.
Aula Prática Machine Learning I
ROTEIRO DE AULA PRÁTICA
NOME DA DISCIPLINA: MACHINE LEARNING I
Unidade: U4 _ REGRESSÃO E CLASSIFICAÇÃO POR MODELOS LINEARES E NÃO
LINEARES. ALGORITMOS DE APRENDIZAGEM SUPERVISIONADA.
Aula: A4_APRENDIZAGEM SUPERVISIONADA
Tempo previsto de execução de aula prática: 2h
OBJETIVOS (campo obrigatório – exibição para todos)
Definição dos objetivos da aula prática:
Compreender os conceitos e aplicações de aprendizado supervisionado
INFRAESTRUTURA (OBRIGATÓRIO SE HOUVER – EXIBIÇÃO DOCENTE/TUTOR)
Instalações – Materiais de consumo – Equipamentos:
NOME DO LABORATÓRIO
Materiais de consumo: https://colab.google/
NOME DO LABORATÓRIO
Equipamentos: NSA
SOLUÇÃO DIGITAL (OBRIGATÓRIO SE HOUVER – APARECER PARA TODOS)
Infraestrutura mínima necessária para execução.
NSA
EQUIPAMENTO DE PROTEÇÃO INDIVIDUAL (EPI) (CAMPO OBRIGATÓRIO – APARECER
PARA TODOS)
NSA
PROCEDIMENTOS PRÁTICOS (OBRIGATÓRIO – TODOS)
Procedimento/Atividade nº 1 (Físico)
3
Atividade proposta:
Você trabalha como cientista de dados em uma empresa de tecnologia que está desenvolvendo
um sistema de reconhecimento de dígitos manuscritos. Seu objetivo é construir e treinar um
modelo de Multilayer Perceptron (MLP) usando TensorFlow para classificar dígitos manuscritos
do conjunto de dados MNIST.
Procedimentos para a realização da atividade:
Link do vídeo ilustrativo da aula: (NÃO OBRIGATÓRIO – APARECER QUANDO
DISPONÍVEL)
Qualquer ajuste ou alteração do procedimento poderá ocorrer, sem qualquer prejuízo na
realização da aula prática. (COMENTÁRIO SERÁ APRESENTADO APENAS NO RAP DO
ALUNO)
Procedimentos para a Realização da Atividade:
1. Importar Bibliotecas e Carregar Dados:
Importar as bibliotecas necessárias.
Carregar o conjunto de dados MNIST.
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical
import matplotlib.pyplot as plt
# Carregar o conjunto de dados MNIST
(X_train, y_train), (X_test, y_test) = mnist.load_data()
2. Preparar os Dados:
Normalizar os dados para melhorar o desempenho do modelo.
Converter os rótulos para uma representação categórica.
3. Construir o Modelo MLP:
Definir a arquitetura do modelo usando camadas densas.
4. Treinar o Modelo:
Treinar o modelo com os dados de treinamento.
5. Avaliar o Modelo:
Avaliar a precisão do modelo com os dados de teste.
6. Fazer Previsões:
Usar o modelo para fazer previsões com novos dados e visualizar alguns
resultados.
Checklist:
4
1) Importar bibliotecas e carregar os dados de MNIST.
2) Normalizar os dados de entrada.
3) Converter os rótulos para uma representação categórica.
4) Definir a arquitetura do modelo MLP.
5) Compilar o modelo.
6) Treinar o modelo.
7) Avaliar a precisão do modelo.
8) Fazer previsões e visualizar resultados.
Resultado do experimento (Gabarito): (não obrigatório – aparecer apenas para
professor/tutor)
Procedimento/Atividade nº 1 (Virtual)
Atividade proposta:
Procedimentos para a realização da atividade:
Link do vídeo ilustrativo da aula: (NÃO OBRIGATÓRIO – APARECER QUANDO
DISPONÍVEL)
Qualquer ajuste ou alteração do procedimento poderá ocorrer, sem qualquer prejuízo na
realização da aula prática. (COMENTÁRIO SERÁ APRESENTADO APENAS NO RAP DO
ALUNO)
Checklist:
Resultado do experimento (Gabarito): (não obrigatório – aparecer apenas para
professor/tutor)
RESULTADOS (obrigatório – aparecer para todos)
Resultados de Aprendizagem:
Compreender e aplicar os conceitos de aprendizado supervisionado.
5
ESTUDANTE, VOCÊ DEVERÁ ENTREGAR (não obrigatório – aparecer para todos)
Descrição orientativa sobre a entregada da comprovação da aula prática:
Entrega de um print da tela do Google Colab
REFERÊNCIAS BIBLIOGRÁFICAS (não obrigatório – aparecer para todos)
Descrição (em abnt) das referências utilizadas
Como funciona?
Elaboramos os portfólios, já deixamos prontos, nas normas da ABNT e conforme os requisitos da universidade. Fácil assim! O MELHOR É QUE VOCÊ COMPRA E JÁ BAIXA NA HORA O SEU ARQUIVO EM WORD! Sabemos que conciliar trabalho, família, vida profissional e estudos é difícil hoje em dia, por isso, estamos aqui para ajudar você. Conte com nossa qualidade, experiência e profissionalismo adquirindo seu portfólio conosco. GARANTIMOS SEU CONCEITO!
Como se realizam os envios?
O seu trabalho é disponibilizado pronto, respondido e nas normas já na mesma hora aqui em nosso site na sua área de downloads e também no seu e-mail.
Em quanto tempo recebo o portfólio?
Os envios são imediatos. Após sua compra, o trabalho já é disponibilizado instantaneamente aqui em nosso site e no seu e-mail.
E se o portfólio que comprei precisar de correção?
Caso haja alguma solicitação de correção/alteração por parte do tutor, basta entrar em contato conosco pelo WhatsApp que providênciaremos sem custo algum.
Qual o formato do arquivo?
Os arquivos são enviados em formato Word e são editáveis.
Caso eu tiver alguma dúvida, terei suporte no pós venda?
Sim, com certeza. Basta clicar no ícone do WhatsApp no cantinho da tela. Será um prazer atendê-lo(a).
Quais os seus canais de contato?
Whatsapp: 53 984751621 – Clicar no canto da tela ou ESCANEIE O QRCODE ABAIXO
E-mail:portifoliosp@gmail.com
Portfólio pronto Unopar Anhanguera em Word, respondido, completo e já nas normas.